Asymptotic properties of a component-wise ARH (1) plug-in predictor

Resumen

This paper presents new results on the prediction of linear processes in function spaces. The autoregressive Hilbertian process framework of order one (ARH(1) framework) is adopted. A component-wise estimator of the autocorrelation operator is derived from the moment-based estimation of its diagonal coefficients with respect to the orthogonal eigenvectors of the autocovariance operator, which are assumed to be known. Mean-square convergence to the theoretical autocorrelation operator is proved in the space of Hilbert–Schmidt operators. Consistency then follows in that space. Mean absolute convergence, in the underlying Hilbert space, of the ARH(1) plug-in predictor to the conditional expectation is obtained as well. A simulation study is undertaken to illustrate the large-sample behavior of the formulated component-wise estimator and predictor. Additionally, alternative component-wise (with known and unknown eigenvectors), regularized, wavelet-based penalized, and nonparametric kernel estimators of the autocorrelation operator are compared with the one presented here, in terms of prediction.

Publicación
J. Multivariate Anal. 155, 12-34

Ver el resto de producción científica en Google Scholar.

series temporales datos funcionales (FDA)
Javier Álvarez Liébana
De Carabanchel. Doctor en Estadística

Licenciado en Matemáticas, Doctor en Estadística, Ayudante Doctor, investigador, docente e intentando esto de la divulgación. Especializado en estadística, programación en R y visualización de datos.

Siguiente
Anterior