Asymptotic properties of a component-wise ARH (1) plug-in predictor


Functional Analysis of Variance (FANOVA) from Hilbertvalued correlated data with spatial rectangular or circular supports is analyzed, when Dirichlet conditions are assumed on the boundary. Specifically, a Hilbert-valued fixed effect model with error term defined from an Autoregressive Hilbertian process of order one (ARH(1) process) is considered. A new statistical test is also derived to contrast the significance of the functional fixed effect parameters. The Dirichlet conditions established at the boundary affect the dependence range of the correlated error term. While the rate of convergence to zero of the eigenvalues of the covariance kernels, characterizing the Gaussian functional error components, directly affects the stability of the generalized least-squares parameter estimation problem. A simulation study and a real-data application related to fMRI analysis are undertaken to illustrate the performance of the parameter estimator and statistical test derived.

Statistics and Its Interface 10, 607-628

Ver el resto de producción científica en Google Scholar.

datos funcionales (FDA) bioestadística
Javier Álvarez Liébana
De Carabanchel. Doctor en Estadística

Licenciado en Matemáticas, Doctor en Estadística, Ayudante Doctor, investigador, docente e intentando esto de la divulgación. Especializado en estadística, programación en R y visualización de datos.